EEG-vigilance and BOLD effect during simultaneous EEG/fMRI measurement
نویسندگان
چکیده
Different EEG-vigilance stages from full alertness to sleep onset can be separated during rest. Also fMRI research recently focused on the resting condition and identified several resting state networks. In order to deepen the understanding of different levels of global brain function from relaxed wakefulness to sleep onset the association between EEG-vigilance stages and BOLD signals was analysed. EEG-vigilance stages were attributed to consecutive 3-sec-EEG-segments by an algorithm using topographic and spectral information. Results of the classification were validated by analysing the heart rates during the different brain states. Vigilance stages served as regressors for the analysis of the simultaneously acquired fMRI data. Additionally resting state networks were derived from the fMRI data using independent component analysis (ICA). Also vigilance associated brain activity revealed by EEG-based standardized low resolution tomography (sLORETA) was compared to the results of the fMRI analysis. Results showed increased BOLD signal in the occipital cortex, the anterior cingulate cortex, the frontal cortex, the parietal cortices and the temporal cortices and decreasing BOLD signals in the thalamus and the frontal cortex for declining vigilance stages (A2, A3, B1, B2/B3) in comparison to the high vigilance stage A1. Resting state networks revealed a spatial overlap with the vigilance stage associated BOLD maps in conjunction analyses. sLORETA showed increased neuroelectric alpha activity at the occipital cortex comparable to occipital BOLD signal decreases when comparing stage A with stage B. Different EEG-vigilance stages during rest are associated with pronounced differences of BOLD signals in several brain areas which partly correspond to the resting state networks. For cognitive fMRI-research it therefore seems important to pay attention to vigilance switches in order to separate vigilance associated BOLD signal changes from those specifically related to cognition.
منابع مشابه
Correlation of BOLD Signal with Linear and Nonlinear Patterns of EEG in Resting State EEG-Informed fMRI
Concurrent EEG and fMRI acquisitions in resting state showed a correlation between EEG power in various bands and spontaneous BOLD fluctuations. However, there is a lack of data on how changes in the complexity of brain dynamics derived from EEG reflect variations in the BOLD signal. The purpose of our study was to correlate both spectral patterns, as linear features of EEG rhythms, and nonline...
متن کاملEEG AND BOLD-CONTRAST fMRI IN BRAIN Cerebrovascular reactivity, suppression of neuronal activity, global and local brain injury
The purpose of the present study was to gain more insight into the blood oxygen level-dependent (BOLD)-contrast functional MRI (fMRI) in the brain and its connection to EEG, both in global and local scales of their temporal and spatial relations. BOLD signal changes were studied during hyperventilation (HV) induced EEG reactivity of intermittent rhythmic delta activity (IRDA). The BOLD signal i...
متن کاملElectrophysiological correlates of the BOLD signal for EEG-informed fMRI
Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are important tools in cognitive and clinical neuroscience. Combined EEG-fMRI has been shown to help to characterise brain networks involved in epileptic activity, as well as in different sensory, motor and cognitive functions. A good understanding of the electrophysiological correlates of the blood oxygen level-depen...
متن کاملTrial-by-trial coupling between EEG and BOLD identifies networks related to alpha and theta EEG power increases during working memory maintenance
PET and fMRI experiments have previously shown that several brain regions in the frontal and parietal lobe are involved in working memory maintenance. MEG and EEG experiments have shown parametric increases with load for oscillatory activity in posterior alpha and frontal theta power. In the current study we investigated whether the areas found with fMRI can be associated with these alpha and t...
متن کاملThe spatio-temporal mapping of epileptic networks: Combination of EEG–fMRI and EEG source imaging
Simultaneous EEG-fMRI acquisitions in patients with epilepsy often reveal distributed patterns of Blood Oxygen Level Dependant (BOLD) change correlated with epileptiform discharges. We investigated if electrical source imaging (ESI) performed on the interictal epileptiform discharges (IED) acquired during fMRI acquisition could be used to study the dynamics of the networks identified by the BOL...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 45 2 شماره
صفحات -
تاریخ انتشار 2009